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A brief overview of the classical linear

regression model

Learning Outcomes

In this chapter, you will learn how to

● Derive the OLS formulae for estimating parameters and their
standard errors

● Explain the desirable properties that a good estimator should
have

● Discuss the factors that affect the sizes of standard errors

● Test hypotheses using the test of significance and confidence
interval approaches

● Interpret p-values

● Estimate regression models and test single hypotheses in
EViews

2.1 What is a regression model?

Regression analysis is almost certainly the most important tool at the

econometrician’s disposal. But what is regression analysis? In very general

terms, regression is concerned with describing and evaluating the relation-

ship between a given variable and one or more other variables. More specifically,

regression is an attempt to explain movements in a variable by reference

to movements in one or more other variables.

To make this more concrete, denote the variable whose movements

the regression seeks to explain by y and the variables which are used to

explain those variations by x1, x2, . . . , xk . Hence, in this relatively simple

setup, it would be said that variations in k variables (the xs) cause changes

in some other variable, y. This chapter will be limited to the case where

the model seeks to explain changes in only one variable y (although this

restriction will be removed in chapter 6).
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Box 2.1 Names for y and xs in regression models

Names for y

Dependent variable

Regressand

Effect variable

Explained variable

Names for the xs

Independent variables

Regressors

Causal variables

Explanatory variables

There are various completely interchangeable names for y and the

xs, and all of these terms will be used synonymously in this book (see

box 2.1).

2.2 Regression versus correlation

All readers will be aware of the notion and definition of correlation. The

correlation between two variables measures the degree of linear association

between them. If it is stated that y and x are correlated, it means that y

and x are being treated in a completely symmetrical way. Thus, it is not

implied that changes in x cause changes in y, or indeed that changes in

y cause changes in x . Rather, it is simply stated that there is evidence

for a linear relationship between the two variables, and that movements

in the two are on average related to an extent given by the correlation

coefficient.

In regression, the dependent variable (y) and the independent vari-

able(s) (xs) are treated very differently. The y variable is assumed to be

random or ‘stochastic’ in some way, i.e. to have a probability distribution.

The x variables are, however, assumed to have fixed (‘non-stochastic’) val-

ues in repeated samples.1 Regression as a tool is more flexible and more

powerful than correlation.

2.3 Simple regression

For simplicity, suppose for now that it is believed that y depends on only

one x variable. Again, this is of course a severely restricted case, but the

case of more explanatory variables will be considered in the next chap-

ter. Three examples of the kind of relationship that may be of interest

include:

1 Strictly, the assumption that the xs are non-stochastic is stronger than required, an

issue that will be discussed in more detail in chapter 4.
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Scatter plot of two

variables, y and x

● How asset returns vary with their level of market risk

● Measuring the long-term relationship between stock prices and

dividends

● Constructing an optimal hedge ratio.

Suppose that a researcher has some idea that there should be a relation-

ship between two variables y and x , and that financial theory suggests

that an increase in x will lead to an increase in y. A sensible first stage

to testing whether there is indeed an association between the variables

would be to form a scatter plot of them. Suppose that the outcome of this

plot is figure 2.1.

In this case, it appears that there is an approximate positive linear

relationship between x and y which means that increases in x are usually

accompanied by increases in y, and that the relationship between them

can be described approximately by a straight line. It would be possible

to draw by hand onto the graph a line that appears to fit the data. The

intercept and slope of the line fitted by eye could then be measured from

the graph. However, in practice such a method is likely to be laborious

and inaccurate.

It would therefore be of interest to determine to what extent this rela-

tionship can be described by an equation that can be estimated using a de-

fined procedure. It is possible to use the general equation for a straight line

y = α + βx (2.1)
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Box 2.2 Reasons for the inclusion of the disturbance term

● Even in the general case where there is more than one explanatory variable, some

determinants of yt will always in practice be omitted from the model. This might, for

example, arise because the number of influences on y is too large to place in a

single model, or because some determinants of y may be unobservable or not

measurable.

● There may be errors in the way that y is measured which cannot be modelled.

● There are bound to be random outside influences on y that again cannot be

modelled. For example, a terrorist attack, a hurricane or a computer failure could all

affect financial asset returns in a way that cannot be captured in a model and

cannot be forecast reliably. Similarly, many researchers would argue that human

behaviour has an inherent randomness and unpredictability!

to get the line that best ‘fits’ the data. The researcher would then be

seeking to find the values of the parameters or coefficients, α and β,

which would place the line as close as possible to all of the data points

taken together.

However, this equation (y = α + βx) is an exact one. Assuming that this

equation is appropriate, if the values of α and β had been calculated, then

given a value of x , it would be possible to determine with certainty what

the value of y would be. Imagine -- a model which says with complete

certainty what the value of one variable will be given any value of the

other!

Clearly this model is not realistic. Statistically, it would correspond to

the case where the model fitted the data perfectly -- that is, all of the data

points lay exactly on a straight line. To make the model more realistic, a

random disturbance term, denoted by u, is added to the equation, thus

yt = α + βxt + ut (2.2)

where the subscript t (= 1, 2, 3, . . .) denotes the observation number. The

disturbance term can capture a number of features (see box 2.2).

So how are the appropriate values of α and β determined? α and β are

chosen so that the (vertical) distances from the data points to the fitted

lines are minimised (so that the line fits the data as closely as possible).

The parameters are thus chosen to minimise collectively the (vertical)

distances from the data points to the fitted line. This could be done by

‘eye-balling’ the data and, for each set of variables y and x , one could

form a scatter plot and draw on a line that looks as if it fits the data well

by hand, as in figure 2.2.

Note that the vertical distances are usually minimised rather than the

horizontal distances or those taken perpendicular to the line. This arises
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as a result of the assumption that x is fixed in repeated samples, so that

the problem becomes one of determining the appropriate model for y

given (or conditional upon) the observed values of x .

This ‘eye-balling’ procedure may be acceptable if only indicative results

are required, but of course this method, as well as being tedious, is likely

to be imprecise. The most common method used to fit a line to the data is

known as ordinary least squares (OLS). This approach forms the workhorse

of econometric model estimation, and will be discussed in detail in this

and subsequent chapters.

Two alternative estimation methods (for determining the appropriate

values of the coefficients α and β) are the method of moments and the

method of maximum likelihood. A generalised version of the method of

moments, due to Hansen (1982), is popular, but beyond the scope of this

book. The method of maximum likelihood is also widely employed, and

will be discussed in detail in chapter 8.

Suppose now, for ease of exposition, that the sample of data contains

only five observations. The method of OLS entails taking each vertical

distance from the point to the line, squaring it and then minimising

the total sum of the areas of squares (hence ‘least squares’), as shown in

figure 2.3. This can be viewed as equivalent to minimising the sum of the

areas of the squares drawn from the points to the line.

Tightening up the notation, let yt denote the actual data point for ob-

servation t and let ŷt denote the fitted value from the regression line -- in
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other words, for the given value of x of this observation t , ŷt is the value

for y which the model would have predicted. Note that a hat (ˆ) over a

variable or parameter is used to denote a value estimated by a model.

Finally, let ût denote the residual, which is the difference between the

actual value of y and the value fitted by the model for this data point --

i.e. (yt − ŷt ). This is shown for just one observation t in figure 2.4.

What is done is to minimise the sum of the û2
t . The reason that the sum

of the squared distances is minimised rather than, for example, finding

the sum of ût that is as close to zero as possible, is that in the latter case

some points will lie above the line while others lie below it. Then, when

the sum to be made as close to zero as possible is formed, the points
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above the line would count as positive values, while those below would

count as negatives. So these distances will in large part cancel each other

out, which would mean that one could fit virtually any line to the data,

so long as the sum of the distances of the points above the line and the

sum of the distances of the points below the line were the same. In that

case, there would not be a unique solution for the estimated coefficients.

In fact, any fitted line that goes through the mean of the observations

(i.e. x̄ , ȳ) would set the sum of the ût to zero. However, taking the squared

distances ensures that all deviations that enter the calculation are positive

and therefore do not cancel out.

So minimising the sum of squared distances is given by minimising

(û2
1 + û2

2 + û2
3 + û2

4 + û2
5), or minimising

(

5
∑

t=1

û2
t

)

This sum is known as the residual sum of squares (RSS) or the sum of squared

residuals. But what is ût? Again, it is the difference between the actual

point and the line, yt − ŷt . So minimising
∑

t û2
t is equivalent to minimis-

ing
∑

t (yt − ŷt )
2.

Letting α̂ and β̂ denote the values of α and β selected by minimising the

RSS, respectively, the equation for the fitted line is given by ŷt = α̂ + β̂xt .

Now let L denote the RSS, which is also known as a loss function. Take

the summation over all of the observations, i.e. from t = 1 to T , where T

is the number of observations

L =
T

∑

t=1

(yt − ŷt )
2 =

T
∑

t=1

(yt − α̂ − β̂xt )
2. (2.3)

L is minimised with respect to (w.r.t.) α̂ and β̂, to find the values of α and β

which minimise the residual sum of squares to give the line that is closest

to the data. So L is differentiated w.r.t. α̂ and β̂, setting the first derivatives

to zero. A derivation of the ordinary least squares (OLS) estimator is given

in the appendix to this chapter. The coefficient estimators for the slope

and the intercept are given by

β̂ =

∑

xt yt − T xy
∑

x2
t − T x̄2

(2.4) α̂ = ȳ − β̂ x̄ (2.5)

Equations (2.4) and (2.5) state that, given only the sets of observations xt

and yt , it is always possible to calculate the values of the two parameters,

α̂ and β̂, that best fit the set of data. Equation (2.4) is the easiest formula
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Table 2.1 Sample data on fund XXX to motivate OLS estimation

Excess return on Excess return on
Year, t fund XXX = rX X X,t − r ft market index = rmt − r ft

1 17.8 13.7
2 39.0 23.2
3 12.8 6.9
4 24.2 16.8
5 17.2 12.3

to use to calculate the slope estimate, but the formula can also be written,

more intuitively, as

β̂ =
∑

(xt − x̄)(yt − ȳ)
∑

(xt − x̄)2
(2.6)

which is equivalent to the sample covariance between x and y divided by

the sample variance of x .

To reiterate, this method of finding the optimum is known as OLS. It

is also worth noting that it is obvious from the equation for α̂ that the

regression line will go through the mean of the observations -- i.e. that

the point (x̄, ȳ) lies on the regression line.

Example 2.1

Suppose that some data have been collected on the excess returns on a

fund manager’s portfolio (‘fund XXX’) together with the excess returns on

a market index as shown in table 2.1.

The fund manager has some intuition that the beta (in the CAPM

framework) on this fund is positive, and she therefore wants to find

whether there appears to be a relationship between x and y given the data.

Again, the first stage could be to form a scatter plot of the two variables

(figure 2.5).

Clearly, there appears to be a positive, approximately linear relation-

ship between x and y, although there is not much data on which to base

this conclusion! Plugging the five observations in to make up the for-

mulae given in (2.4) and (2.5) would lead to the estimates α̂ = −1.74 and

β̂ = 1.64. The fitted line would be written as

ŷt = −1.74 + 1.64xt (2.7)

where xt is the excess return of the market portfolio over the risk free

rate (i.e. rm − rf), also known as the market risk premium.
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2.3.1 What are α̂ and β̂ used for?

This question is probably best answered by posing another question. If an

analyst tells you that she expects the market to yield a return 20% higher

than the risk-free rate next year, what would you expect the return on

fund XXX to be?

The expected value of y = ‘−1.74 + 1.64 × value of x ’, so plug x = 20

into (2.7)

ŷt = −1.74 + 1.64 × 20 = 31.06 (2.8)

Thus, for a given expected market risk premium of 20%, and given its

riskiness, fund XXX would be expected to earn an excess over the risk-

free rate of approximately 31%. In this setup, the regression beta is also

the CAPM beta, so that fund XXX has an estimated beta of 1.64, sug-

gesting that the fund is rather risky. In this case, the residual sum of

squares reaches its minimum value of 30.33 with these OLS coefficient

values.

Although it may be obvious, it is worth stating that it is not advisable

to conduct a regression analysis using only five observations! Thus the

results presented here can be considered indicative and for illustration of

the technique only. Some further discussions on appropriate sample sizes

for regression analysis are given in chapter 4.

The coefficient estimate of 1.64 for β is interpreted as saying that, ‘if

x increases by 1 unit, y will be expected, everything else being equal,

to increase by 1.64 units’. Of course, if β̂ had been negative, a rise in x

would on average cause a fall in y. α̂, the intercept coefficient estimate, is
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interpreted as the value that would be taken by the dependent variable y

if the independent variable x took a value of zero. ‘Units’ here refer to the

units of measurement of xt and yt . So, for example, suppose that β̂ = 1.64,

x is measured in per cent and y is measured in thousands of US dollars.

Then it would be said that if x rises by 1%, y will be expected to rise on

average by $1.64 thousand (or $1,640). Note that changing the scale of y

or x will make no difference to the overall results since the coefficient

estimates will change by an off-setting factor to leave the overall relation-

ship between y and x unchanged (see Gujarati, 2003, pp. 169--173 for a

proof). Thus, if the units of measurement of y were hundreds of dollars

instead of thousands, and everything else remains unchanged, the slope

coefficient estimate would be 16.4, so that a 1% increase in x would lead

to an increase in y of $16.4 hundreds (or $1,640) as before. All other prop-

erties of the OLS estimator discussed below are also invariant to changes

in the scaling of the data.

A word of caution is, however, in order concerning the reliability of

estimates of the constant term. Although the strict interpretation of the

intercept is indeed as stated above, in practice, it is often the case that

there are no values of x close to zero in the sample. In such instances,

estimates of the value of the intercept will be unreliable. For example,

consider figure 2.6, which demonstrates a situation where no points are

close to the y-axis.
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In such cases, one could not expect to obtain robust estimates of the

value of y when x is zero as all of the information in the sample pertains

to the case where x is considerably larger than zero.

A similar caution should be exercised when producing predictions for

y using values of x that are a long way outside the range of values in

the sample. In example 2.1, x takes values between 7% and 23% in the

available data. So, it would not be advisable to use this model to determine

the expected excess return on the fund if the expected excess return on

the market were, say 1% or 30%, or −5% (i.e. the market was expected to

fall).

2.4 Some further terminology

2.4.1 The population and the sample

The population is the total collection of all objects or people to be studied. For

example, in the context of determining the relationship between risk and

return for UK equities, the population of interest would be all time series

observations on all stocks traded on the London Stock Exchange (LSE).

The population may be either finite or infinite, while a sample is a

selection of just some items from the population. In general, either all of the

observations for the entire population will not be available, or they may be

so many in number that it is infeasible to work with them, in which case

a sample of data is taken for analysis. The sample is usually random, and

it should be representative of the population of interest. A random sample

is a sample in which each individual item in the population is equally

likely to be drawn. The size of the sample is the number of observations

that are available, or that it is decided to use, in estimating the regression

equation.

2.4.2 The data generating process, the population regression function and the

sample regression function

The population regression function (PRF) is a description of the model

that is thought to be generating the actual data and it represents the true

relationship between the variables. The population regression function is also

known as the data generating process (DGP). The PRF embodies the true

values of α and β, and is expressed as

yt = α + βxt + ut (2.9)

Note that there is a disturbance term in this equation, so that even if one

had at one’s disposal the entire population of observations on x and y,
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it would still in general not be possible to obtain a perfect fit of the line

to the data. In some textbooks, a distinction is drawn between the PRF

(the underlying true relationship between y and x) and the DGP (the

process describing the way that the actual observations on y come about),

although in this book, the two terms will be used synonymously.

The sample regression function, SRF, is the relationship that has been

estimated using the sample observations, and is often written as

ŷt = α̂ + β̂xt (2.10)

Notice that there is no error or residual term in (2.10); all this equation

states is that given a particular value of x , multiplying it by β̂ and adding

α̂ will give the model fitted or expected value for y, denoted ŷ. It is also

possible to write

yt = α̂ + β̂xt + ût (2.11)

Equation (2.11) splits the observed value of y into two components: the

fitted value from the model, and a residual term.

The SRF is used to infer likely values of the PRF. That is, the estimates

α̂ and β̂ are constructed, for the sample of data at hand, but what is really

of interest is the true relationship between x and y -- in other words,

the PRF is what is really wanted, but all that is ever available is the SRF!

However, what can be said is how likely it is, given the figures calculated

for α̂ and β̂, that the corresponding population parameters take on certain

values.

2.4.3 Linearity and possible forms for the regression function

In order to use OLS, a model that is linear is required. This means that,

in the simple bivariate case, the relationship between x and y must be

capable of being expressed diagramatically using a straight line. More

specifically, the model must be linear in the parameters (α and β), but it

does not necessarily have to be linear in the variables (y and x). By ‘linear

in the parameters’, it is meant that the parameters are not multiplied

together, divided, squared, or cubed, etc.

Models that are not linear in the variables can often be made to take

a linear form by applying a suitable transformation or manipulation. For

example, consider the following exponential regression model

Yt = AX
β
t eut (2.12)
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Taking logarithms of both sides, applying the laws of logs and rearranging

the right-hand side (RHS)

ln Yt = ln(A) + β ln X t + ut (2.13)

where A and β are parameters to be estimated. Now let α = ln(A), yt = ln Yt

and xt = ln X t

yt = α + βxt + ut (2.14)

This is known as an exponential regression model since Y varies according

to some exponent (power) function of X . In fact, when a regression equa-

tion is expressed in ‘double logarithmic form’, which means that both

the dependent and the independent variables are natural logarithms, the

coefficient estimates are interpreted as elasticities (strictly, they are unit

changes on a logarithmic scale). Thus a coefficient estimate of 1.2 for β̂ in

(2.13) or (2.14) is interpreted as stating that ‘a rise in X of 1% will lead on

average, everything else being equal, to a rise in Y of 1.2%’. Conversely, for

y and x in levels rather than logarithmic form (e.g. (2.9)), the coefficients

denote unit changes as described above.

Similarly, if theory suggests that x should be inversely related to y ac-

cording to a model of the form

yt = α +
β

xt

+ ut (2.15)

the regression can be estimated using OLS by setting

zt =
1

xt

and regressing y on a constant and z. Clearly, then, a surprisingly varied

array of models can be estimated using OLS by making suitable transfor-

mations to the variables. On the other hand, some models are intrinsically

non-linear, e.g.

yt = α + βx
γ
t + ut (2.16)

Such models cannot be estimated using OLS, but might be estimable using

a non-linear estimation method (see chapter 8).

2.4.4 Estimator or estimate?

Estimators are the formulae used to calculate the coefficients -- for example,

the expressions given in (2.4) and (2.5) above, while the estimates, on

the other hand, are the actual numerical values for the coefficients that are

obtained from the sample.
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2.5 Simple linear regression in EViews – estimation
of an optimal hedge ratio

This section shows how to run a bivariate regression using EViews. The

example considers the situation where an investor wishes to hedge a long

position in the S&P500 (or its constituent stocks) using a short position

in futures contracts. Many academic studies assume that the objective of

hedging is to minimise the variance of the hedged portfolio returns. If

this is the case, then the appropriate hedge ratio (the number of units

of the futures asset to sell per unit of the spot asset held) will be the

slope estimate (i.e. β̂) in a regression where the dependent variable is a

time series of spot returns and the independent variable is a time series

of futures returns.2

This regression will be run using the file ‘SandPhedge.xls’, which con-

tains monthly returns for the S&P500 index (in column 2) and S&P500

futures (in column 3). As described in chapter 1, the first step is to

open an appropriately dimensioned workfile. Open EViews and click on

File/New/Workfile; choose Dated – regular frequency and Monthly fre-

quency data. The start date is 2002:02 and the end date is 2007:07. Then

import the Excel file by clicking Import and Read Text-Lotus-Excel. The

data start in B2 and as for the previous example in chapter 1, the first

column contains only dates which we do not need to read in. In ‘Names

for series or Number if named in file’, we can write Spot Futures. The

two imported series will now appear as objects in the workfile and can

be verified by checking a couple of entries at random against the original

Excel file.

The first step is to transform the levels of the two series into percentage

returns. It is common in academic research to use continuously com-

pounded returns rather than simple returns. To achieve this (i.e. to pro-

duce continuously compounded returns), click on Genr and in the ‘Enter

Equation’ dialog box, enter dfutures=100*dlog(futures). Then click Genr

again and do the same for the spot series: dspot=100*dlog(spot). Do not

forget to Save the workfile. Continue to re-save it at regular intervals to

ensure that no work is lost!

Before proceeding to estimate the regression, now that we have im-

ported more than one series, we can examine a number of descriptive

statistics together and measures of association between the series. For ex-

ample, click Quick and Group Statistics. From there you will see that it

is possible to calculate the covariances or correlations between series and

2 See chapter 8 for a detailed discussion of why this is the appropriate hedge ratio.
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a number of other measures that will be discussed later in the book. For

now, click on Descriptive Statistics and Common Sample.3 In the dialog

box that appears, type rspot rfutures and click OK. Some summary statis-

tics for the spot and futures are presented, as displayed in screenshot 2.1,

and these are quite similar across the two series, as one would expect.

Screenshot 2.1

Summary statistics

for spot and futures

Note that the number of observations has reduced from 66 for the levels

of the series to 65 when we computed the returns (as one observation is

‘lost’ in constructing the t − 1 value of the prices in the returns formula).

If you want to save the summary statistics, you must name them by click-

ing Name and then choose a name, e.g. Descstats. The default name is

‘group01’, which could have also been used. Click OK.

We can now proceed to estimate the regression. There are several ways to

do this, but the easiest is to select Quick and then Estimate Equation. You

3 ‘Common sample’ will use only the part of the sample that is available for all the series

selected, whereas ‘Individual sample’ will use all available observations for each

individual series. In this case, the number of observations is the same for both series

and so identical results would be observed for both options.
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Screenshot 2.2

Equation estimation

window

will be presented with a dialog box, which, when it has been completed,

will look like screenshot 2.2.

In the ‘Equation Specification’ window, you insert the list of variables

to be used, with the dependent variable (y) first, and including a constant

(c), so type rspot c rfutures. Note that it would have been possible to write

this in an equation format as rspot = c(1) + c(2)∗rfutures, but this is more

cumbersome.

In the ‘Estimation settings’ box, the default estimation method is OLS

and the default sample is the whole sample, and these need not be modi-

fied. Click OK and the regression results will appear, as in screenshot 2.3.

The parameter estimates for the intercept (α̂) and slope (β̂) are 0.36 and

0.12 respectively. Name the regression results returnreg, and it will now

appear as a new object in the list. A large number of other statistics are

also presented in the regression output -- the purpose and interpretation

of these will be discussed later in this and subsequent chapters.

Now estimate a regression for the levels of the series rather than

the returns (i.e. run a regression of spot on a constant and futures) and

examine the parameter estimates. The return regression slope parame-

ter estimated above measures the optimal hedge ratio and also measures
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Screenshot 2.3

Estimation results

the short run relationship between the two series. By contrast, the slope

parameter in a regression using the raw spot and futures indices (or the

log of the spot series and the log of the futures series) can be interpreted

as measuring the long run relationship between them. This issue of the

long and short runs will be discussed in detail in chapter 4. For now, click

Quick/Estimate Equation and enter the variables spot c futures in the

Equation Specification dialog box, click OK, then name the regression

results ‘levelreg’. The intercept estimate (α̂) in this regression is 21.11

and the slope estimate (β̂) is 0.98. The intercept can be considered to ap-

proximate the cost of carry, while as expected, the long-term relationship

between spot and futures prices is almost 1:1 -- see chapter 7 for further

discussion of the estimation and interpretation of this long-term relation-

ship. Finally, click the Save button to save the whole workfile.

2.6 The assumptions underlying the classical linear regression model

The model yt = α + βxt + ut that has been derived above, together with

the assumptions listed below, is known as the classical linear regression model
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Box 2.3 Assumptions concerning disturbance terms and their interpretation

Technical notation Interpretation

(1) E(ut ) = 0 The errors have zero mean

(2) var(ut ) = σ 2 < ∞ The variance of the errors is constant and

finite over all values of xt

(3) cov(ui , u j ) = 0 The errors are linearly independent of

one another

(4) cov(ut , xt ) = 0 There is no relationship between the error

and corresponding x variate

(CLRM). Data for xt is observable, but since yt also depends on ut , it is neces-

sary to be specific about how the ut are generated. The set of assumptions

shown in box 2.3 are usually made concerning the uts, the unobservable

error or disturbance terms. Note that no assumptions are made concern-

ing their observable counterparts, the estimated model’s residuals.

As long as assumption 1 holds, assumption 4 can be equivalently written

E(xt ut ) = 0. Both formulations imply that the regressor is orthogonal to

(i.e. unrelated to) the error term. An alternative assumption to 4, which

is slightly stronger, is that the xt are non-stochastic or fixed in repeated

samples. This means that there is no sampling variation in xt , and that

its value is determined outside the model.

A fifth assumption is required to make valid inferences about the pop-

ulation parameters (the actual α and β) from the sample parameters (α̂

and β̂) estimated using a finite amount of data:

(5)ut ∼ N(0, σ 2)−i.e. that ut is normally distributed

2.7 Properties of the OLS estimator

If assumptions 1--4 hold, then the estimators α̂ and β̂ determined by OLS

will have a number of desirable properties, and are known as Best Linear

Unbiased Estimators (BLUE). What does this acronym stand for?

● ‘Estimator’ -- α̂ and β̂ are estimators of the true value of α and β

● ‘Linear’ -- α̂ and β̂ are linear estimators -- that means that the formulae

for α̂ and β̂ are linear combinations of the random variables (in this

case, y)

● ‘Unbiased’ -- on average, the actual values of α̂ and β̂ will be equal to

their true values
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● ‘Best’ -- means that the OLS estimator β̂ has minimum variance among

the class of linear unbiased estimators; the Gauss--Markov theorem

proves that the OLS estimator is best by examining an arbitrary alter-

native linear unbiased estimator and showing in all cases that it must

have a variance no smaller than the OLS estimator.

Under assumptions 1--4 listed above, the OLS estimator can be shown

to have the desirable properties that it is consistent, unbiased and effi-

cient. Unbiasedness and efficiency have already been discussed above, and

consistency is an additional desirable property. These three characteristics

will now be discussed in turn.

2.7.1 Consistency

The least squares estimators α̂ and β̂ are consistent. One way to state this

algebraically for β̂ (with the obvious modifications made for α̂) is

lim
T →∞

Pr [|β̂ − β| > δ] = 0 ∀ δ > 0 (2.17)

This is a technical way of stating that the probability (Pr) that β̂ is more

than some arbitrary fixed distance δ away from its true value tends to

zero as the sample size tends to infinity, for all positive values of δ. In

the limit (i.e. for an infinite number of observations), the probability of

the estimator being different from the true value is zero. That is, the

estimates will converge to their true values as the sample size increases

to infinity. Consistency is thus a large sample, or asymptotic property. The

assumptions that E(xt ut ) = 0 and E(ut ) = 0 are sufficient to derive the

consistency of the OLS estimator.

2.7.2 Unbiasedness

The least squares estimates of α̂ and β̂ are unbiased. That is

E(α̂) = α (2.18)

and

E(β̂) = β (2.19)

Thus, on average, the estimated values for the coefficients will be equal to

their true values. That is, there is no systematic overestimation or under-

estimation of the true coefficients. To prove this also requires the assump-

tion that cov(ut , xt ) = 0. Clearly, unbiasedness is a stronger condition than

consistency, since it holds for small as well as large samples (i.e. for all

sample sizes).
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2.7.3 Efficiency

An estimator β̂ of a parameter β is said to be efficient if no other estima-

tor has a smaller variance. Broadly speaking, if the estimator is efficient,

it will be minimising the probability that it is a long way off from the

true value of β. In other words, if the estimator is ‘best’, the uncertainty

associated with estimation will be minimised for the class of linear un-

biased estimators. A technical way to state this would be to say that an

efficient estimator would have a probability distribution that is narrowly

dispersed around the true value.

2.8 Precision and standard errors

Any set of regression estimates α̂ and β̂ are specific to the sample used

in their estimation. In other words, if a different sample of data was

selected from within the population, the data points (the xt and yt ) will

be different, leading to different values of the OLS estimates.

Recall that the OLS estimators (α̂ and β̂) are given by (2.4) and (2.5). It

would be desirable to have an idea of how ‘good’ these estimates of α and

β are in the sense of having some measure of the reliability or precision of

the estimators (α̂ and β̂). It is thus useful to know whether one can have

confidence in the estimates, and whether they are likely to vary much

from one sample to another sample within the given population. An idea

of the sampling variability and hence of the precision of the estimates

can be calculated using only the sample of data available. This estimate is

given by its standard error. Given assumptions 1--4 above, valid estimators

of the standard errors can be shown to be given by

SE(α̂) = s

√

√

√

√

∑

x2
t

T
∑

(xt − x̄)2
= s

√

√

√

√

√

∑

x2
t

T
((

∑

x2
t

)

− Tx̄2
) (2.20)

SE(β̂) = s

√

1
∑

(xt − x̄)2
= s

√

1
∑

x2
t − Tx̄2

(2.21)

where s is the estimated standard deviation of the residuals (see below).

These formulae are derived in the appendix to this chapter.

It is worth noting that the standard errors give only a general indication

of the likely accuracy of the regression parameters. They do not show

how accurate a particular set of coefficient estimates is. If the standard

errors are small, it shows that the coefficients are likely to be precise

on average, not how precise they are for this particular sample. Thus

standard errors give a measure of the degree of uncertainty in the estimated
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values for the coefficients. It can be seen that they are a function of

the actual observations on the explanatory variable, x , the sample size,

T , and another term, s. The last of these is an estimate of the variance

of the disturbance term. The actual variance of the disturbance term is

usually denoted by σ 2. How can an estimate of σ 2 be obtained?

2.8.1 Estimating the variance of the error term (σ 2)

From elementary statistics, the variance of a random variable ut is given by

var(ut ) = E[(ut ) − E(ut )]
2 (2.22)

Assumption 1 of the CLRM was that the expected or average value of the

errors is zero. Under this assumption, (2.22) above reduces to

var(ut ) = E
[

u2
t

]

(2.23)

So what is required is an estimate of the average value of u2
t , which could

be calculated as

s2 =
1

T

∑

u2
t (2.24)

Unfortunately (2.24) is not workable since ut is a series of population

disturbances, which is not observable. Thus the sample counterpart to ut ,

which is ût , is used

s2 =
1

T

∑

û2
t (2.25)

But this estimator is a biased estimator of σ 2. An unbiased estimator,

s2, would be given by the following equation instead of the previous one

s2 =

∑

û2
t

T − 2
(2.26)

where
∑

û2
t is the residual sum of squares, so that the quantity of rele-

vance for the standard error formulae is the square root of (2.26)

s =

√

∑

û2
t

T − 2
(2.27)

s is also known as the standard error of the regression or the standard error

of the estimate. It is sometimes used as a broad measure of the fit of the

regression equation. Everything else being equal, the smaller this quantity

is, the closer is the fit of the line to the actual data.

2.8.2 Some comments on the standard error estimators

It is possible, of course, to derive the formulae for the standard errors

of the coefficient estimates from first principles using some algebra, and
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this is left to the appendix to this chapter. Some general intuition is now

given as to why the formulae for the standard errors given by (2.20) and

(2.21) contain the terms that they do and in the form that they do. The

presentation offered in box 2.4 loosely follows that of Hill, Griffiths and

Judge (1997), which is the clearest that this author has seen.

Box 2.4 Standard error estimators

(1) The larger the sample size, T , the smaller will be the coefficient standard errors.

T appears explicitly in SE(α̂) and implicitly in SE(β̂). T appears implicitly since the

sum
∑

(xt − x̄)2 is from t = 1 to T . The reason for this is simply that, at least for

now, it is assumed that every observation on a series represents a piece of useful

information which can be used to help determine the coefficient estimates. So the

larger the size of the sample, the more information will have been used in estimation

of the parameters, and hence the more confidence will be placed in those estimates.

(2) Both SE(α̂) and SE(β̂) depend on s2 (or s). Recall from above that s2 is the estimate

of the error variance. The larger this quantity is, the more dispersed are the residuals,

and so the greater is the uncertainty in the model. If s2 is large, the data points are

collectively a long way away from the line.

(3) The sum of the squares of the xt about their mean appears in both formulae – since
∑

(xt − x̄)2 appears in the denominators. The larger the sum of squares, the smaller

the coefficient variances. Consider what happens if
∑

(xt − x̄)2 is small or large, as

shown in figures 2.7 and 2.8, respectively.

In figure 2.7, the data are close together so that
∑

(xt − x̄)2 is small. In this first

case, it is more difficult to determine with any degree of certainty exactly where the

line should be. On the other hand, in figure 2.8, the points are widely dispersed

y

x

_
y

x
_

0

Figure 2.7

Effect on the

standard errors of

the coefficient

estimates when

(xt − x̄) are narrowly

dispersed
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across a long section of the line, so that one could hold more confidence in the

estimates in this case.

(4) The term
∑

x2
t affects only the intercept standard error and not the slope standard

error. The reason is that
∑

x2
t measures how far the points are away from the y-axis.

Consider figures 2.9 and 2.10.

In figure 2.9, all of the points are bunched a long way from the y-axis, which makes

it more difficult to accurately estimate the point at which the estimated line crosses

the y-axis (the intercept). In figure 2.10, the points collectively are closer to

y

x0

_
y

x
_

Figure 2.8

Effect on the

standard errors of

the coefficient

estimates when

(xt − x̄) are widely

dispersed
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Effect on the

standard errors of

x2
t large
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x

y

0

Figure 2.10

Effect on the

standard errors of

x2
t small

the y-axis and hence it will be easier to determine where the line actually crosses

the axis. Note that this intuition will work only in the case where all of the xt are

positive!

Example 2.2

Assume that the following data have been calculated from a regression of

y on a single variable x and a constant over 22 observations
∑

xt yt = 830102, T = 22, x̄ = 416.5, ȳ = 86.65,

∑

x2
t = 3919654, RSS = 130.6

Determine the appropriate values of the coefficient estimates and their

standard errors.

This question can simply be answered by plugging the appropriate num-

bers into the formulae given above. The calculations are

β̂ =
830102 − (22 × 416.5 × 86.65)

3919654 − 22 × (416.5)2
= 0.35

α̂ = 86.65 − 0.35 × 416.5 = −59.12

The sample regression function would be written as

ŷt = α̂ + β̂xt

ŷt = −59.12 + 0.35xt
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Now, turning to the standard error calculations, it is necessary to obtain

an estimate, s, of the error variance

SE (regression), s =

√

∑

û2
t

T − 2
=

√

130.6

20
= 2.55

SE(α̂) = 2.55 ×

√

3919654

22 × (3919654 − 22 × 416.52)
= 3.35

SE(β̂) = 2.55 ×
√

1

3919654 − 22 × 416.52
= 0.0079

With the standard errors calculated, the results are written as

ŷt = −59.12 + 0.35xt

(3.35) (0.0079)
(2.28)

The standard error estimates are usually placed in parentheses under the

relevant coefficient estimates.

2.9 An introduction to statistical inference

Often, financial theory will suggest that certain coefficients should take

on particular values, or values within a given range. It is thus of interest

to determine whether the relationships expected from financial theory

are upheld by the data to hand or not. Estimates of α and β have been

obtained from the sample, but these values are not of any particular in-

terest; the population values that describe the true relationship between

the variables would be of more interest, but are never available. Instead,

inferences are made concerning the likely population values from the re-

gression parameters that have been estimated from the sample of data

to hand. In doing this, the aim is to determine whether the differences

between the coefficient estimates that are actually obtained, and expecta-

tions arising from financial theory, are a long way from one another in a

statistical sense.

Example 2.3

Suppose the following regression results have been calculated:

ŷt = 20.3 + 0.5091xt

(14.38) (0.2561)
(2.29)

β̂ = 0.5091 is a single (point) estimate of the unknown population param-

eter, β. As stated above, the reliability of the point estimate is measured
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by the coefficient’s standard error. The information from one or more of

the sample coefficients and their standard errors can be used to make

inferences about the population parameters. So the estimate of the slope

coefficient is β̂ = 0.5091, but it is obvious that this number is likely to

vary to some degree from one sample to the next. It might be of interest

to answer the question, ‘Is it plausible, given this estimate, that the true

population parameter, β, could be 0.5? Is it plausible that β could be 1?’,

etc. Answers to these questions can be obtained through hypothesis testing.

2.9.1 Hypothesis testing: some concepts

In the hypothesis testing framework, there are always two hypotheses that

go together, known as the null hypothesis (denoted H0 or occasionally HN)

and the alternative hypothesis (denoted H1 or occasionally HA). The null hy-

pothesis is the statement or the statistical hypothesis that is actually being

tested. The alternative hypothesis represents the remaining outcomes of

interest.

For example, suppose that given the regression results above, it is of

interest to test the hypothesis that the true value of β is in fact 0.5. The

following notation would be used.

H0 : β = 0.5

H1 : β �= 0.5

This states that the hypothesis that the true but unknown value of β could

be 0.5 is being tested against an alternative hypothesis where β is not 0.5.

This would be known as a two-sided test, since the outcomes of both

β < 0.5 and β > 0.5 are subsumed under the alternative hypothesis.

Sometimes, some prior information may be available, suggesting for

example that β > 0.5 would be expected rather than β < 0.5. In this case,

β < 0.5 is no longer of interest to us, and hence a one-sided test would be

conducted:

H0 : β = 0.5

H1 : β > 0.5

Here the null hypothesis that the true value of β is 0.5 is being tested

against a one-sided alternative that β is more than 0.5.

On the other hand, one could envisage a situation where there is prior

information that β < 0.5 is expected. For example, suppose that an in-

vestment bank bought a piece of new risk management software that is

intended to better track the riskiness inherent in its traders’ books and

that β is some measure of the risk that previously took the value 0.5.

Clearly, it would not make sense to expect the risk to have risen, and so
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β > 0.5, corresponding to an increase in risk, is not of interest. In this

case, the null and alternative hypotheses would be specified as

H0 : β = 0.5

H1 : β < 0.5

This prior information should come from the financial theory of the prob-

lem under consideration, and not from an examination of the estimated

value of the coefficient. Note that there is always an equality under the

null hypothesis. So, for example, β < 0.5 would not be specified under

the null hypothesis.

There are two ways to conduct a hypothesis test: via the test of significance

approach or via the confidence interval approach. Both methods centre on

a statistical comparison of the estimated value of the coefficient, and its

value under the null hypothesis. In very general terms, if the estimated

value is a long way away from the hypothesised value, the null hypothesis

is likely to be rejected; if the value under the null hypothesis and the esti-

mated value are close to one another, the null hypothesis is less likely to

be rejected. For example, consider β̂ = 0.5091 as above. A hypothesis that

the true value of β is 5 is more likely to be rejected than a null hypothesis

that the true value of β is 0.5. What is required now is a statistical decision

rule that will permit the formal testing of such hypotheses.

2.9.2 The probability distribution of the least squares estimators

In order to test hypotheses, assumption 5 of the CLRM must be used,

namely that ut ∼ N(0, σ 2) -- i.e. that the error term is normally distributed.

The normal distribution is a convenient one to use for it involves only

two parameters (its mean and variance). This makes the algebra involved

in statistical inference considerably simpler than it otherwise would have

been. Since yt depends partially on ut , it can be stated that if ut is normally

distributed, yt will also be normally distributed.

Further, since the least squares estimators are linear combinations of

the random variables, i.e. β̂ =
∑

wt yt , where wt are effectively weights,

and since the weighted sum of normal random variables is also normally

distributed, it can be said that the coefficient estimates will also be nor-

mally distributed. Thus

α̂ ∼ N(α, var(α̂)) and β̂ ∼ N(β, var(β̂))

Will the coefficient estimates still follow a normal distribution if the er-

rors do not follow a normal distribution? Well, briefly, the answer is usu-

ally ‘yes’, provided that the other assumptions of the CLRM hold, and the

sample size is sufficiently large. The issue of non-normality, how to test

for it, and its consequences, will be further discussed in chapter 4.
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x

xf (  )Figure 2.11

The normal

distribution

Standard normal variables can be constructed from α̂ and β̂ by subtract-

ing the mean and dividing by the square root of the variance

α̂ − α
√

var(α̂)
∼ N(0, 1) and

β̂ − β
√

var(β̂)
∼ N(0, 1)

The square roots of the coefficient variances are the standard errors. Unfor-

tunately, the standard errors of the true coefficient values under the PRF

are never known -- all that is available are their sample counterparts, the

calculated standard errors of the coefficient estimates, SE(α̂) and SE(β̂).4

Replacing the true values of the standard errors with the sample es-

timated versions induces another source of uncertainty, and also means

that the standardised statistics follow a t -distribution with T − 2 degrees

of freedom (defined below) rather than a normal distribution, so

α̂ − α

SE(α̂)
∼ tT −2 and

β̂ − β

SE(β̂)
∼ tT −2

This result is not formally proved here. For a formal proof, see Hill,

Griffiths and Judge (1997, pp. 88--90).

2.9.3 A note on the t and the normal distributions

The normal distribution, shown in figure 2.11, should be familiar to read-

ers. Note its characteristic ‘bell’ shape and its symmetry around the mean

(of zero for a standard normal distribution).

4 Strictly, these are the estimated standard errors conditional on the parameter estimates,

and so should be denoted SÊ(α̂) and SÊ(β̂), but the additional layer of hats will be

omitted here since the meaning should be obvious from the context.
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Table 2.2 Critical values from the standard normal versus

t-distribution

Significance level (%) N (0,1) t40 t4

50% 0 0 0
5% 1.64 1.68 2.13
2.5% 1.96 2.02 2.78
0.5% 2.57 2.70 4.60

normal distribution

t-distribution

x

xf (  )Figure 2.12

The t-distribution

versus the normal

A normal variate can be scaled to have zero mean and unit variance

by subtracting its mean and dividing by its standard deviation. There is a

specific relationship between the t - and the standard normal distribution,

and the t -distribution has another parameter, its degrees of freedom.

What does the t -distribution look like? It looks similar to a normal

distribution, but with fatter tails, and a smaller peak at the mean, as

shown in figure 2.12.

Some examples of the percentiles from the normal and t -distributions

taken from the statistical tables are given in table 2.2. When used in the

context of a hypothesis test, these percentiles become critical values. The

values presented in table 2.2 would be those critical values appropriate

for a one-sided test of the given significance level.

It can be seen that as the number of degrees of freedom for the t -

distribution increases from 4 to 40, the critical values fall substantially.

In figure 2.12, this is represented by a gradual increase in the height of

the distribution at the centre and a reduction in the fatness of the tails as

the number of degrees of freedom increases. In the limit, a t -distribution

with an infinite number of degrees of freedom is a standard normal, i.e.
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t∞ = N (0, 1), so the normal distribution can be viewed as a special case of

the t.

Putting the limit case, t∞, aside, the critical values for the t -distribution

are larger in absolute value than those from the standard normal. This

arises from the increased uncertainty associated with the situation where

the error variance must be estimated. So now the t -distribution is used,

and for a given statistic to constitute the same amount of reliable evidence

against the null, it has to be bigger in absolute value than in circumstances

where the normal is applicable.

There are broadly two approaches to testing hypotheses under regres-

sion analysis: the test of significance approach and the confidence interval

approach. Each of these will now be considered in turn.

2.9.4 The test of significance approach

Assume the regression equation is given by yt = α + βxt + ut , t =
1, 2, . . . , T . The steps involved in doing a test of significance are shown

in box 2.5.

Box 2.5 Conducting a test of significance

(1) Estimate α̂, β̂ and SE(α̂), SE(β̂) in the usual way.

(2) Calculate the test statistic. This is given by the formula

test statistic =
β̂ − β∗

SE(β̂)
(2.30)

where β∗ is the value of β under the null hypothesis. The null hypothesis is H0 : β

= β∗ and the alternative hypothesis is H1 : β �= β∗ (for a two-sided test).

(3) A tabulated distribution with which to compare the estimated test statistics is re-

quired. Test statistics derived in this way can be shown to follow a t -distribution with

T − 2 degrees of freedom.

(4) Choose a ‘significance level’, often denoted α (not the same as the regression

intercept coefficient). It is conventional to use a significance level of 5%.

(5) Given a significance level, a rejection region and non-rejection region can be de-

termined. If a 5% significance level is employed, this means that 5% of the total

distribution (5% of the area under the curve) will be in the rejection region. That

rejection region can either be split in half (for a two-sided test) or it can all fall on

one side of the y-axis, as is the case for a one-sided test.

For a two-sided test, the 5% rejection region is split equally between the two tails,

as shown in figure 2.13.

For a one-sided test, the 5% rejection region is located solely in one tail of the

distribution, as shown in figures 2.14 and 2.15, for a test where the alternative

is of the ‘less than’ form, and where the alternative is of the ‘greater than’ form,

respectively.
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H0 : β = β∗,

H1 : β > β∗
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Box 2.5 contd.

(6) Use the t -tables to obtain a critical value or values with which to compare the test

statistic. The critical value will be that value of x that puts 5% into the rejection

region.

(7) Finally perform the test. If the test statistic lies in the rejection region then reject

the null hypothesis (H0), else do not reject H0.

Steps 2--7 require further comment. In step 2, the estimated value of β is

compared with the value that is subject to test under the null hypothesis,

but this difference is ‘normalised’ or scaled by the standard error of the

coefficient estimate. The standard error is a measure of how confident

one is in the coefficient estimate obtained in the first stage. If a standard

error is small, the value of the test statistic will be large relative to the

case where the standard error is large. For a small standard error, it would

not require the estimated and hypothesised values to be far away from one

another for the null hypothesis to be rejected. Dividing by the standard

error also ensures that, under the five CLRM assumptions, the test statistic

follows a tabulated distribution.

In this context, the number of degrees of freedom can be interpreted

as the number of pieces of additional information beyond the minimum

requirement. If two parameters are estimated (α and β -- the intercept

and the slope of the line, respectively), a minimum of two observations is

required to fit this line to the data. As the number of degrees of freedom

increases, the critical values in the tables decrease in absolute terms, since

less caution is required and one can be more confident that the results

are appropriate.

The significance level is also sometimes called the size of the test (note

that this is completely different from the size of the sample) and it de-

termines the region where the null hypothesis under test will be rejected

or not rejected. Remember that the distributions in figures 2.13--2.15 are

for a random variable. Purely by chance, a random variable will take on

extreme values (either large and positive values or large and negative val-

ues) occasionally. More specifically, a significance level of 5% means that

a result as extreme as this or more extreme would be expected only 5%

of the time as a consequence of chance alone. To give one illustration, if

the 5% critical value for a one-sided test is 1.68, this implies that the test

statistic would be expected to be greater than this only 5% of the time by

chance alone. There is nothing magical about the test -- all that is done is

to specify an arbitrary cutoff value for the test statistic that determines

whether the null hypothesis would be rejected or not. It is conventional

to use a 5% size of test, but 10% and 1% are also commonly used.
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However, one potential problem with the use of a fixed (e.g. 5%) size

of test is that if the sample size is sufficiently large, any null hypothesis

can be rejected. This is particularly worrisome in finance, where tens of

thousands of observations or more are often available. What happens is

that the standard errors reduce as the sample size increases, thus leading

to an increase in the value of all t -test statistics. This problem is frequently

overlooked in empirical work, but some econometricians have suggested

that a lower size of test (e.g. 1%) should be used for large samples (see, for

example, Leamer, 1978, for a discussion of these issues).

Note also the use of terminology in connection with hypothesis tests:

it is said that the null hypothesis is either rejected or not rejected. It is

incorrect to state that if the null hypothesis is not rejected, it is ‘accepted’

(although this error is frequently made in practice), and it is never said

that the alternative hypothesis is accepted or rejected. One reason why

it is not sensible to say that the null hypothesis is ‘accepted’ is that it

is impossible to know whether the null is actually true or not! In any

given situation, many null hypotheses will not be rejected. For example,

suppose that H0 : β = 0.5 and H0 : β = 1 are separately tested against the

relevant two-sided alternatives and neither null is rejected. Clearly then it

would not make sense to say that ‘H0 : β = 0.5 is accepted’ and ‘H0 : β = 1

is accepted’, since the true (but unknown) value of β cannot be both 0.5

and 1. So, to summarise, the null hypothesis is either rejected or not

rejected on the basis of the available evidence.

2.9.5 The confidence interval approach to hypothesis testing (box 2.6)

To give an example of its usage, one might estimate a parameter, say β̂, to

be 0.93, and a ‘95% confidence interval’ to be (0.77, 1.09). This means that

in many repeated samples, 95% of the time, the true value of β will be

contained within this interval. Confidence intervals are almost invariably

estimated in a two-sided form, although in theory a one-sided interval

can be constructed. Constructing a 95% confidence interval is equivalent

to using the 5% level in a test of significance.

2.9.6 The test of significance and confidence interval approaches always

give the same conclusion

Under the test of significance approach, the null hypothesis that β = β∗

will not be rejected if the test statistic lies within the non-rejection region,

i.e. if the following condition holds

−tcrit ≤
β̂ − β∗

SE(β̂)
≤ + tcrit
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Box 2.6 Carrying out a hypothesis test using confidence intervals

(1) Calculate α̂, β̂ and SE(α̂), SE(β̂) as before.

(2) Choose a significance level, α (again the convention is 5%). This is equivalent to

choosing a (1 − α)∗100% confidence interval

i.e. 5% significance level = 95% confidence interval

(3) Use the t -tables to find the appropriate critical value, which will again have T −2

degrees of freedom.

(4) The confidence interval for β is given by

(β̂ − tcrit · SE(β̂), β̂ + tcrit · SE(β̂))

Note that a centre dot (·) is sometimes used instead of a cross (×) to denote when

two quantities are multiplied together.

(5) Perform the test: if the hypothesised value of β (i.e. β∗) lies outside the confidence

interval, then reject the null hypothesis that β = β∗, otherwise do not reject the null.

Rearranging, the null hypothesis would not be rejected if

−tcrit · SE(β̂) ≤ β̂ − β∗ ≤ + tcrit · SE(β̂)

i.e. one would not reject if

β̂ − tcrit · SE(β̂) ≤ β∗ ≤ β̂ + tcrit · SE(β̂)

But this is just the rule for non-rejection under the confidence interval

approach. So it will always be the case that, for a given significance level,

the test of significance and confidence interval approaches will provide

the same conclusion by construction. One testing approach is simply an

algebraic rearrangement of the other.

Example 2.4

Given the regression results above

ŷt = 20.3 + 0.5091xt
, T = 22

(14.38) (0.2561)
(2.31)

Using both the test of significance and confidence interval approaches, test

the hypothesis that β = 1 against a two-sided alternative. This hypothesis

might be of interest, for a unit coefficient on the explanatory variable

implies a 1:1 relationship between movements in x and movements in y.

The null and alternative hypotheses are respectively:

H0 : β = 1

H1 : β �= 1
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Box 2.7 The test of significance and confidence interval approaches compared

Test of significance approach Confidence interval approach

test stat =
β̂ − β∗

SE(β̂)

=
0.5091 − 1

0.2561
= −1.917

Find tcrit = t20;5% = ±2.086

Find tcrit = t20;5% = ±2.086

β̂ ± tcrit · SE(β̂)

= 0.5091 ± 2.086 · 0.2561

= (−0.0251, 1.0433)

Do not reject H0 since test statistic Do not reject H0 since 1 lies

lies within non-rejection region within the confidence interval

The results of the test according to each approach are shown in box 2.7.

A couple of comments are in order. First, the critical value from the

t -distribution that is required is for 20 degrees of freedom and at the 5%

level. This means that 5% of the total distribution will be in the rejec-

tion region, and since this is a two-sided test, 2.5% of the distribution

is required to be contained in each tail. From the symmetry of the t -

distribution around zero, the critical values in the upper and lower tail

will be equal in magnitude, but opposite in sign, as shown in figure 2.16.

What if instead the researcher wanted to test H0 : β = 0 or H0 : β = 2?

In order to test these hypotheses using the test of significance approach,

the test statistic would have to be reconstructed in each case, although the

critical value would be the same. On the other hand, no additional work

would be required if the confidence interval approach had been adopted,

x

95% non-rejection region2.5%
rejection region

2.5%
rejection region

–2.086 +2.086

xf (  )Figure 2.16

Critical values and

rejection regions for

a t20;5%
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since it effectively permits the testing of an infinite number of hypotheses.

So for example, suppose that the researcher wanted to test

H0 : β = 0

versus

H1 : β �= 0

and

H0 : β = 2

versus

H1 : β �= 2

In the first case, the null hypothesis (that β = 0) would not be rejected

since 0 lies within the 95% confidence interval. By the same argument, the

second null hypothesis (that β =2) would be rejected since 2 lies outside

the estimated confidence interval.

On the other hand, note that this book has so far considered only the

results under a 5% size of test. In marginal cases (e.g. H0 : β = 1, where the

test statistic and critical value are close together), a completely different

answer may arise if a different size of test was used. This is where the test

of significance approach is preferable to the construction of a confidence

interval.

For example, suppose that now a 10% size of test is used for the null

hypothesis given in example 2.4. Using the test of significance approach,

test statistic =
β̂ − β∗

SE(β̂)

=
0.5091 − 1

0.2561
= −1.917

as above. The only thing that changes is the critical t -value. At the 10%

level (so that 5% of the total distribution is placed in each of the tails

for this two-sided test), the required critical value is t20;10% = ±1.725. So

now, as the test statistic lies in the rejection region, H0 would be rejected.

In order to use a 10% test under the confidence interval approach, the

interval itself would have to have been re-estimated since the critical value

is embedded in the calculation of the confidence interval.

So the test of significance and confidence interval approaches both have

their relative merits. The testing of a number of different hypotheses is

easier under the confidence interval approach, while a consideration of
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the effect of the size of the test on the conclusion is easier to address

under the test of significance approach.

Caution should therefore be used when placing emphasis on or making

decisions in the context of marginal cases (i.e. in cases where the null

is only just rejected or not rejected). In this situation, the appropriate

conclusion to draw is that the results are marginal and that no strong in-

ference can be made one way or the other. A thorough empirical analysis

should involve conducting a sensitivity analysis on the results to deter-

mine whether using a different size of test alters the conclusions. It is

worth stating again that it is conventional to consider sizes of test of 10%,

5% and 1%. If the conclusion (i.e. ‘reject’ or ‘do not reject’) is robust to

changes in the size of the test, then one can be more confident that the

conclusions are appropriate. If the outcome of the test is qualitatively al-

tered when the size of the test is modified, the conclusion must be that

there is no conclusion one way or the other!

It is also worth noting that if a given null hypothesis is rejected using a

1% significance level, it will also automatically be rejected at the 5% level,

so that there is no need to actually state the latter. Dougherty (1992,

p. 100), gives the analogy of a high jumper. If the high jumper can clear

2 metres, it is obvious that the jumper could also clear 1.5 metres. The

1% significance level is a higher hurdle than the 5% significance level.

Similarly, if the null is not rejected at the 5% level of significance, it will

automatically not be rejected at any stronger level of significance (e.g. 1%).

In this case, if the jumper cannot clear 1.5 metres, there is no way s/he

will be able to clear 2 metres.

2.9.7 Some more terminology

If the null hypothesis is rejected at the 5% level, it would be said that the

result of the test is ‘statistically significant’. If the null hypothesis is not

rejected, it would be said that the result of the test is ‘not significant’, or

that it is ‘insignificant’. Finally, if the null hypothesis is rejected at the

1% level, the result is termed ‘highly statistically significant’.

Note that a statistically significant result may be of no practical sig-

nificance. For example, if the estimated beta for a stock under a CAPM

regression is 1.05, and a null hypothesis that β = 1 is rejected, the result

will be statistically significant. But it may be the case that a slightly higher

beta will make no difference to an investor’s choice as to whether to buy

the stock or not. In that case, one would say that the result of the test

was statistically significant but financially or practically insignificant.
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Table 2.3 Classifying hypothesis testing errors and correct conclusions

Reality

H0 is true H0 is false

Significant Type I error = α
√

Result of test (reject H0)

Insignificant
√

Type II error = β

(do not reject H0)

2.9.8 Classifying the errors that can be made using hypothesis tests

H0 is usually rejected if the test statistic is statistically significant at a

chosen significance level. There are two possible errors that could be made:

(1) Rejecting H0 when it was really true; this is called a type I error.

(2) Not rejecting H0 when it was in fact false; this is called a type II error.

The possible scenarios can be summarised in table 2.3.

The probability of a type I error is just α, the significance level or size

of test chosen. To see this, recall what is meant by ‘significance’ at the 5%

level: it is only 5% likely that a result as or more extreme as this could

have occurred purely by chance. Or, to put this another way, it is only 5%

likely that this null would be rejected when it was in fact true.

Note that there is no chance for a free lunch (i.e. a cost-less gain) here!

What happens if the size of the test is reduced (e.g. from a 5% test to a

1% test)? The chances of making a type I error would be reduced . . . but so

would the probability that the null hypothesis would be rejected at all,

so increasing the probability of a type II error. The two competing effects

of reducing the size of the test can be shown in box 2.8.

So there always exists, therefore, a direct trade-off between type I

and type II errors when choosing a significance level. The only way to

Box 2.8 Type I and Type II errors

Less likely Lower

to falsely →chance of

Reduce size→More strict →Reject nullր reject type I error

of test (e.g. criterion for hypothesisց
5% to 1%) rejection less often More likely to Higher

incorrectly →chance of

not reject type II error
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reduce the chances of both is to increase the sample size or to select

a sample with more variation, thus increasing the amount of informa-

tion upon which the results of the hypothesis test are based. In practice,

up to a certain level, type I errors are usually considered more serious

and hence a small size of test is usually chosen (5% or 1% are the most

common).

The probability of a type I error is the probability of incorrectly reject-

ing a correct null hypothesis, which is also the size of the test. Another

important piece of terminology in this area is the power of a test. The power

of a test is defined as the probability of (appropriately) rejecting an incor-

rect null hypothesis. The power of the test is also equal to one minus the

probability of a type II error.

An optimal test would be one with an actual test size that matched

the nominal size and which had as high a power as possible. Such a test

would imply, for example, that using a 5% significance level would result

in the null being rejected exactly 5% of the time by chance alone, and

that an incorrect null hypothesis would be rejected close to 100% of the

time.

2.10 A special type of hypothesis test: the t -ratio

Recall that the formula under a test of significance approach to hypothesis

testing using a t -test for the slope parameter was

test statistic =
β̂ − β∗

SE
(

β̂
) (2.32)

with the obvious adjustments to test a hypothesis about the intercept. If

the test is

H0 : β = 0

H1 : β �= 0

i.e. a test that the population parameter is zero against a two-sided alter-

native, this is known as a t -ratio test. Since β∗ = 0, the expression in (2.32)

collapses to

test statistic =
β̂

SE(β̂)
(2.33)

Thus the ratio of the coefficient to its standard error, given by this

expression, is known as the t-ratio or t-statistic.
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Example 2.5

Suppose that we have calculated the estimates for the intercept and the

slope (1.10 and −19.88 respectively) and their corresponding standard er-

rors (1.35 and 1.98 respectively). The t -ratios associated with each of the

intercept and slope coefficients would be given by

α̂ β̂

Coefficient 1.10 −19.88

SE 1.35 1.98

t-ratio 0.81 −10.04

Note that if a coefficient is negative, its t -ratio will also be negative. In

order to test (separately) the null hypotheses that α = 0 and β = 0, the

test statistics would be compared with the appropriate critical value from

a t -distribution. In this case, the number of degrees of freedom, given by

T − k, is equal to 15 -- 3=12. The 5% critical value for this two-sided test

(remember, 2.5% in each tail for a 5% test) is 2.179, while the 1% two-sided

critical value (0.5% in each tail) is 3.055. Given these t -ratios and critical

values, would the following null hypotheses be rejected?

H0 : α = 0? (No)

H0 : β = 0? (Yes)

If H0 is rejected, it would be said that the test statistic is significant. If the

variable is not ‘significant’, it means that while the estimated value of the

coefficient is not exactly zero (e.g. 1.10 in the example above), the coeffi-

cient is indistinguishable statistically from zero. If a zero were placed in

the fitted equation instead of the estimated value, this would mean that

whatever happened to the value of that explanatory variable, the depen-

dent variable would be unaffected. This would then be taken to mean that

the variable is not helping to explain variations in y, and that it could

therefore be removed from the regression equation. For example, if the t -

ratio associated with x had been −1.04 rather than −10.04 (assuming that

the standard error stayed the same), the variable would be classed as in-

significant (i.e. not statistically different from zero). The only insignificant

term in the above regression is the intercept. There are good statistical

reasons for always retaining the constant, even if it is not significant; see

chapter 4.

It is worth noting that, for degrees of freedom greater than around 25,

the 5% two-sided critical value is approximately ±2. So, as a rule of thumb

(i.e. a rough guide), the null hypothesis would be rejected if the t -statistic

exceeds 2 in absolute value.
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Some authors place the t -ratios in parentheses below the corresponding

coefficient estimates rather than the standard errors. One thus needs to

check which convention is being used in each particular application, and

also to state this clearly when presenting estimation results.

There will now follow two finance case studies that involve only the

estimation of bivariate linear regression models and the construction and

interpretation of t -ratios.

2.11 An example of the use of a simple t -test to test a theory in
finance: can US mutual funds beat the market?

Jensen (1968) was the first to systematically test the performance of mutual

funds, and in particular examine whether any ‘beat the market’. He used

a sample of annual returns on the portfolios of 115 mutual funds from

1945--64. Each of the 115 funds was subjected to a separate OLS time series

regression of the form

Rjt − Rft = α j + β j (Rmt − Rft) + ujt (2.52)

where Rjt is the return on portfolio j at time t, Rft is the return on a

risk-free proxy (a 1-year government bond), Rmt is the return on a mar-

ket portfolio proxy, ujt is an error term, and α j , β j are parameters to be

estimated. The quantity of interest is the significance of α j , since this

parameter defines whether the fund outperforms or underperforms the

market index. Thus the null hypothesis is given by: H0 : α j = 0. A positive

and significant α j for a given fund would suggest that the fund is able

to earn significant abnormal returns in excess of the market-required re-

turn for a fund of this given riskiness. This coefficient has become known

as ‘Jensen’s alpha’. Some summary statistics across the 115 funds for the

estimated regression results for (2.52) are given in table 2.4.

Table 2.4 Summary statistics for the estimated regression results for (2.52)

Extremal values

Item Mean value Median value Minimum Maximum

α̂ −0.011 −0.009 −0.080 0.058

β̂ 0.840 0.848 0.219 1.405
Sample size 17 19 10 20

Source: Jensen (1968). Reprinted with the permission of Blackwell Publishers.
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As table 2.4 shows, the average (defined as either the mean or the me-

dian) fund was unable to ‘beat the market’, recording a negative alpha

in both cases. There were, however, some funds that did manage to per-

form significantly better than expected given their level of risk, with the

best fund of all yielding an alpha of 0.058. Interestingly, the average fund

had a beta estimate of around 0.85, indicating that, in the CAPM context,

most funds were less risky than the market index. This result may be

attributable to the funds investing predominantly in (mature) blue chip

stocks rather than small caps.

The most visual method of presenting the results was obtained by plot-

ting the number of mutual funds in each t -ratio category for the alpha

coefficient, first gross and then net of transactions costs, as in figure 2.17

and figure 2.18, respectively.
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Table 2.5 Summary statistics for unit trust returns, January 1979–May 2000

Mean Minimum Maximum Median
(%) (%) (%) (%)

Average monthly
return, 1979--2000 1.0 0.6 1.4 1.0

Standard deviation of
returns over time 5.1 4.3 6.9 5.0

The appropriate critical value for a two-sided test of α j = 0 is approx-

imately 2.10 (assuming 20 years of annual data leading to 18 degrees of

freedom). As can be seen, only five funds have estimated t -ratios greater

than 2 and are therefore implied to have been able to outperform the

market before transactions costs are taken into account. Interestingly, five

firms have also significantly underperformed the market, with t -ratios

of --2 or less.

When transactions costs are taken into account (figure 2.18), only one

fund out of 115 is able to significantly outperform the market, while 14

significantly underperform it. Given that a nominal 5% two-sided size of

test is being used, one would expect two or three funds to ‘significantly

beat the market’ by chance alone. It would thus be concluded that, during

the sample period studied, US fund managers appeared unable to system-

atically generate positive abnormal returns.

2.12 Can UK unit trust managers beat the market?

Jensen’s study has proved pivotal in suggesting a method for conducting

empirical tests of the performance of fund managers. However, it has been

criticised on several grounds. One of the most important of these in the

context of this book is that only between 10 and 20 annual observations

were used for each regression. Such a small number of observations is

really insufficient for the asymptotic theory underlying the testing proce-

dure to be validly invoked.

A variant on Jensen’s test is now estimated in the context of the UK

market, by considering monthly returns on 76 equity unit trusts. The

data cover the period January 1979--May 2000 (257 observations for each

fund). Some summary statistics for the funds are presented in table 2.5.

From these summary statistics, the average continuously compounded

return is 1.0% per month, although the most interesting feature is the
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Table 2.6 CAPM regression results for unit trust returns, January 1979–May 2000

Estimates of Mean Minimum Maximum Median

α(%) −0.02 −0.54 0.33 −0.03
β 0.91 0.56 1.09 0.91
t-ratio on α −0.07 −2.44 3.11 −0.25

Figure 2.19

Performance of UK

unit trusts,

1979–2000

wide variation in the performances of the funds. The worst-performing

fund yields an average return of 0.6% per month over the 20-year pe-

riod, while the best would give 1.4% per month. This variability is further

demonstrated in figure 2.19, which plots over time the value of £100 in-

vested in each of the funds in January 1979.

A regression of the form (2.52) is applied to the UK data, and the sum-

mary results presented in table 2.6. A number of features of the regression

results are worthy of further comment. First, most of the funds have esti-

mated betas less than one again, perhaps suggesting that the fund man-

agers have historically been risk-averse or investing disproportionately in

blue chip companies in mature sectors. Second, gross of transactions costs,

nine funds of the sample of 76 were able to significantly outperform the

market by providing a significant positive alpha, while seven funds yielded

significant negative alphas. The average fund (where ‘average’ is measured

using either the mean or the median) is not able to earn any excess return

over the required rate given its level of risk.
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Box 2.9 Reasons for stock market overreactions

(1) That the ‘overreaction effect’ is just another manifestation of the ‘size effect’. The size

effect is the tendency of small firms to generate on average, superior returns to large

firms. The argument would follow that the losers were small firms and that these

small firms would subsequently outperform the large firms. DeBondt and Thaler did

not believe this a sufficient explanation, but Zarowin (1990) found that allowing for

firm size did reduce the subsequent return on the losers.

(2) That the reversals of fortune reflect changes in equilibrium required returns. The losers

are argued to be likely to have considerably higher CAPM betas, reflecting investors’

perceptions that they are more risky. Of course, betas can change over time, and a

substantial fall in the firms’ share prices (for the losers) would lead to a rise in their

leverage ratios, leading in all likelihood to an increase in their perceived riskiness.

Therefore, the required rate of return on the losers will be larger, and their ex post

performance better. Ball and Kothari (1989) find the CAPM betas of losers to be

considerably higher than those of winners.

2.13 The overreaction hypothesis and the UK stock market

2.13.1 Motivation

Two studies by DeBondt and Thaler (1985, 1987) showed that stocks expe-

riencing a poor performance over a 3--5-year period subsequently tend to

outperform stocks that had previously performed relatively well. This im-

plies that, on average, stocks which are ‘losers’ in terms of their returns

subsequently become ‘winners’, and vice versa. This chapter now exam-

ines a paper by Clare and Thomas (1995) that conducts a similar study

using monthly UK stock returns from January 1955 to 1990 (36 years) on

all firms traded on the London Stock exchange.

This phenomenon seems at first blush to be inconsistent with the effi-

cient markets hypothesis, and Clare and Thomas propose two explanations

(box 2.9).

Zarowin (1990) also finds that 80% of the extra return available from

holding the losers accrues to investors in January, so that almost all of

the ‘overreaction effect’ seems to occur at the start of the calendar year.

2.13.2 Methodology

Clare and Thomas take a random sample of 1,000 firms and, for each, they

calculate the monthly excess return of the stock for the market over a 12-,

24- or 36-month period for each stock i

Uit = Rit − Rmt t = 1, . . . , n; i = 1, . . . , 1000;

n = 12, 24 or 36 (2.53)
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Box 2.10 Ranking stocks and forming portfolios

Portfolio Ranking

Portfolio 1 Best performing 20% of firms

Portfolio 2 Next 20%

Portfolio 3 Next 20%

Portfolio 4 Next 20%

Portfolio 5 Worst performing 20% of firms

Box 2.11 Portfolio monitoring

Estimate R̄i for year 1

Monitor portfolios for year 2

Estimate R̄i for year 3

...

Monitor portfolios for year 36

Then the average monthly return over each stock i for the first 12-, 24-, or

36-month period is calculated:

R̄i =
1

n

n
∑

t=1

Uit (2.54)

The stocks are then ranked from highest average return to lowest and

from these 5 portfolios are formed and returns are calculated assuming

an equal weighting of stocks in each portfolio (box 2.10).

The same sample length n is used to monitor the performance of each

portfolio. Thus, for example, if the portfolio formation period is one, two

or three years, the subsequent portfolio tracking period will also be one,

two or three years, respectively. Then another portfolio formation period

follows and so on until the sample period has been exhausted. How many

samples of length n will there be? n = 1, 2, or 3 years. First, suppose n =
1 year. The procedure adopted would be as shown in box 2.11.

So if n = 1, there are 18 independent (non-overlapping) observation

periods and 18 independent tracking periods. By similar arguments, n = 2

gives 9 independent periods and n = 3 gives 6 independent periods. The

mean return for each month over the 18, 9, or 6 periods for the winner

and loser portfolios (the top 20% and bottom 20% of firms in the portfolio

formation period) are denoted by R̄W
pt and R̄L

pt , respectively. Define the

difference between these as R̄Dt = R̄L
pt − R̄W

pt .
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Table 2.7 Is there an overreaction effect in the UK stock market?

Panel A: All Months

n = 12 n = 24 n = 36

Return on loser 0.0033 0.0011 0.0129
Return on winner 0.0036 −0.0003 0.0115
Implied annualised return difference −0.37% 1.68% 1.56%
Coefficient for (2.55): α̂1 −0.00031 0.0014∗∗ 0.0013

(0.29) (2.01) (1.55)

Coefficients for (2.56): α̂2 −0.00034 0.00147∗∗ 0.0013∗

(−0.30) (2.01) (1.41)

Coefficients for (2.56): β̂ −0.022 0.010 −0.0025
(−0.25) (0.21) (−0.06)

Panel B: all months except January

Coefficient for (2.55): α̂1 −0.0007 0.0012∗ 0.0009
(−0.72) (1.63) (1.05)

Notes: t -ratios in parentheses; ∗ and ∗∗ denote significance at the 10% and 5% levels,

respectively.

Source: Clare and Thomas (1995). Reprinted with the permission of Blackwell

Publishers.

The first regression to be performed is of the excess return of the losers

over the winners on a constant only

R̄Dt = α1 + ηt (2.55)

where ηt is an error term. The test is of whether α1 is significant and

positive. However, a significant and positive α1 is not a sufficient condition

for the overreaction effect to be confirmed because it could be owing to

higher returns being required on loser stocks owing to loser stocks being

more risky. The solution, Clare and Thomas (1995) argue, is to allow for

risk differences by regressing against the market risk premium

R̄Dt = α2 + β(Rmt − R f t ) + ηt (2.56)

where Rmt is the return on the FTA All-share, and R f t is the return on a

UK government three-month Treasury Bill. The results for each of these

two regressions are presented in table 2.7.

As can be seen by comparing the returns on the winners and losers in

the first two rows of table 2.7, 12 months is not a sufficiently long time

for losers to become winners. By the two-year tracking horizon, however,

the losers have become winners, and similarly for the three-year samples.

This translates into an average 1.68% higher return on the losers than the
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winners at the two-year horizon, and 1.56% higher return at the three-year

horizon. Recall that the estimated value of the coefficient in a regression

of a variable on a constant only is equal to the average value of that vari-

able. It can also be seen that the estimated coefficients on the constant

terms for each horizon are exactly equal to the differences between the

returns of the losers and the winners. This coefficient is statistically signif-

icant at the two-year horizon, and marginally significant at the three-year

horizon.

In the second test regression, β̂ represents the difference between the

market betas of the winner and loser portfolios. None of the beta coeffi-

cient estimates are even close to being significant, and the inclusion of

the risk term makes virtually no difference to the coefficient values or

significances of the intercept terms.

Removal of the January returns from the samples reduces the subse-

quent degree of overperformance of the loser portfolios, and the signif-

icances of the α̂1 terms is somewhat reduced. It is concluded, therefore,

that only a part of the overreaction phenomenon occurs in January. Clare

and Thomas then proceed to examine whether the overreaction effect is

related to firm size, although the results are not presented here.

2.13.3 Conclusions

The main conclusions from Clare and Thomas’ study are:

(1) There appears to be evidence of overreactions in UK stock returns, as

found in previous US studies.

(2) These over-reactions are unrelated to the CAPM beta.

(3) Losers that subsequently become winners tend to be small, so that

most of the overreaction in the UK can be attributed to the size effect.

2.14 The exact significance level

The exact significance level is also commonly known as the p-value. It

gives the marginal significance level where one would be indifferent between

rejecting and not rejecting the null hypothesis. If the test statistic is ‘large’

in absolute value, the p-value will be small, and vice versa. For example,

consider a test statistic that is distributed as a t62 and takes a value of 1.47.

Would the null hypothesis be rejected? It would depend on the size of the

test. Now, suppose that the p-value for this test is calculated to be 0.12:

● Is the null rejected at the 5% level? No

● Is the null rejected at the 10% level? No

● Is the null rejected at the 20% level? Yes
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Table 2.8 Part of the EViews regression output revisited

Coefficient Std. Error t-Statistic Prob.

C 0.363302 0.444369 0.817569 0.4167
RFUTURES 0.123860 0.133790 0.925781 0.3581

In fact, the null would have been rejected at the 12% level or higher.

To see this, consider conducting a series of tests with size 0.1%, 0.2%,

0.3%, 0.4%, . . . 1%, . . . , 5%, . . . 10%, . . . Eventually, the critical value and test

statistic will meet and this will be the p-value. p-values are almost always

provided automatically by software packages. Note how useful they are!

They provide all of the information required to conduct a hypothesis test

without requiring of the researcher the need to calculate a test statistic or

to find a critical value from a table -- both of these steps have already been

taken by the package in producing the p-value. The p-value is also useful

since it avoids the requirement of specifying an arbitrary significance

level (α). Sensitivity analysis of the effect of the significance level on the

conclusion occurs automatically.

Informally, the p-value is also often referred to as the probability of

being wrong when the null hypothesis is rejected. Thus, for example, if a

p-value of 0.05 or less leads the researcher to reject the null (equivalent to

a 5% significance level), this is equivalent to saying that if the probability

of incorrectly rejecting the null is more than 5%, do not reject it. The

p-value has also been termed the ‘plausibility’ of the null hypothesis; so,

the smaller is the p-value, the less plausible is the null hypothesis.

2.15 Hypothesis testing in EViews – example 1: hedging revisited

Reload the ‘hedge.wf1’ EViews work file that was created above. If we

re-examine the results table from the returns regression (screenshot 2.3

on p. 43), it can be seen that as well as the parameter estimates, EViews

automatically calculates the standard errors, the t -ratios, and the p-values

associated with a two-sided test of the null hypothesis that the true value

of a parameter is zero. Part of the results table is replicated again here

(table 2.8) for ease of interpretation.

The third column presents the t -ratios, which are the test statistics for

testing the null hypothesis that the true values of these parameters are

zero against a two sided alternative -- i.e. these statistics test H0 : α = 0 ver-

sus H1 : α �= 0 in the first row of numbers and H0 : β = 0 versus H1 : β �= 0
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in the second. The fact that these test statistics are both very small is in-

dicative that neither of these null hypotheses is likely to be rejected. This

conclusion is confirmed by the p-values given in the final column. Both p-

values are considerably larger than 0.1, indicating that the corresponding

test statistics are not even significant at the 10% level.

Suppose now that we wanted to test the null hypothesis that H0 : β = 1

rather than H0 : β = 0. We could test this, or any other hypothesis about

the coefficients, by hand, using the information we already have. But it

is easier to let EViews do the work by typing View and then Coefficient

Tests/Wald – Coefficient Restrictions . . . . EViews defines all of the param-

eters in a vector C, so that C(1) will be the intercept and C(2) will be the

slope. Type C(2)=1 and click OK. Note that using this software, it is possi-

ble to test multiple hypotheses, which will be discussed in chapter 3, and

also non-linear restrictions, which cannot be tested using the standard

procedure for inference described above.

Wald Test:
Equation: LEVELREG

Test Statistic Value df Probability

F-statistic 0.565298 (1, 64) 0.4549
Chi-square 0.565298 1 0.4521

Null Hypothesis Summary:

Normalised Restriction (= 0) Value Std. Err.

−1 + C(2) −0.017777 0.023644

Restrictions are linear in coefficients.

The test is performed in two different ways, but results suggest that

the null hypothesis should clearly be rejected as the p-value for the test

is zero to four decimal places. Since we are testing a hypothesis about

only one parameter, the two test statistics (‘F -statistic’ and ‘χ -square’) will

always be identical. These are equivalent to conducting a t -test, and these

alternative formulations will be discussed in detail in chapter 4. EViews

also reports the ‘normalised restriction’, although this can be ignored for

the time being since it merely reports the regression slope parameter (in

a different form) and its standard error.

Now go back to the regression in levels (i.e. with the raw prices rather

than the returns) and test the null hypothesis that β = 1 in this regression.

You should find in this case that the null hypothesis is not rejected (table

below).
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Wald Test:
Equation: RETURNREG

Test Statistic Value df Probability

F-statistic 42.88455 (1, 63) 0.0000
Chi-square 42.88455 1 0.0000

Null Hypothesis Summary:

Normalised Restriction (= 0) Value Std. Err.

−1 + C(2) −0.876140 0.133790

Restrictions are linear in coefficients.

2.16 Estimation and hypothesis testing in EViews – example 2:
the CAPM

This exercise will estimate and test some hypotheses about the CAPM beta

for several US stocks. First, Open a new workfile to accommodate monthly

data commencing in January 2002 and ending in April 2007. Then import

the Excel file ‘capm.xls’. The file is organised by observation and contains

six columns of numbers plus the dates in the first column, so in the

‘Names for series or Number if named in file’ box, type 6. As before, do

not import the dates so the data start in cell B2. The monthly stock prices

of four companies (Ford, General Motors, Microsoft and Sun) will appear as

objects, along with index values for the S&P500 (‘sandp’) and three-month

US-Treasury bills (‘ustb3m’). Save the EViews workfile as ‘capm.wk1’.

In order to estimate a CAPM equation for the Ford stock, for example,

we need to first transform the price series into returns and then the

excess returns over the risk free rate. To transform the series, click on the

Generate button (Genr) in the workfile window. In the new window, type

RSANDP=100*LOG(SANDP/SANDP(−1))

This will create a new series named RSANDP that will contain the returns

of the S&P500. The operator (−1) is used to instruct EViews to use the one-

period lagged observation of the series. To estimate percentage returns on

the Ford stock, press the Genr button again and type

RFORD=100*LOG(FORD/FORD(−1))

This will yield a new series named RFORD that will contain the returns

of the Ford stock. EViews allows various kinds of transformations to the
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series. For example

X2=X/2 creates a new variable called X2 that is half

of X

XSQ=Xˆ2 creates a new variable XSQ that is X squared

LX=LOG(X) creates a new variable LX that is the

log of X

LAGX=X(−1) creates a new variable LAGX containing X

lagged by one period

LAGX2=X(−2) creates a new variable LAGX2 containing X

lagged by two periods

Other functions include:

d(X) first difference of X

d(X,n) nth order difference of X

dlog(X) first difference of the logarithm of X

dlog(X,n) nth order difference of the logarithm of X

abs(X) absolute value of X

If, in the transformation, the new series is given the same name as the

old series, then the old series will be overwritten. Note that the returns

for the S&P index could have been constructed using a simpler command

in the ‘Genr’ window such as

RSANDP=100∗DLOG(SANDP)

as we used in chapter 1. Before we can transform the returns into ex-

cess returns, we need to be slightly careful because the stock returns

are monthly, but the Treasury bill yields are annualised. We could run

the whole analysis using monthly data or using annualised data and it

should not matter which we use, but the two series must be measured

consistently. So, to turn the T-bill yields into monthly figures and to write

over the original series, press the Genr button again and type

USTB3M=USTB3M/12

Now, to compute the excess returns, click Genr again and type

ERSANDP=RSANDP-USTB3M

where ‘ERSANDP’ will be used to denote the excess returns, so that the

original raw returns series will remain in the workfile. The Ford returns

can similarly be transformed into a set of excess returns.

Now that the excess returns have been obtained for the two series,

before running the regression, plot the data to examine visually whether
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the series appear to move together. To do this, create a new object by

clicking on the Object/New Object menu on the menu bar. Select Graph,

provide a name (call the graph Graph1) and then in the new window

provide the names of the series to plot. In this new window, type

ERSANDP ERFORD

Then press OK and screenshot 2.4 will appear.

Screenshot 2.4

Plot of two series

This is a time-series plot of the two variables, but a scatter plot may be

more informative. To examine a scatter plot, Click Options, choose the

Type tab, then select Scatter from the list and click OK. There appears to

be a weak association between ERFTAS and ERFORD. Close the window of

the graph and return to the workfile window.

To estimate the CAPM equation, click on Object/New Objects. In the

new window, select Equation and name the object CAPM. Click on OK.

In the window, specify the regression equation. The regression equation

takes the form

(RFord − r f )t = α + β(RM − r f )t + ut
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Since the data have already been transformed to obtain the excess returns,

in order to specify this regression equation, type in the equation window

ERFORD C ERSANDP

To use all the observations in the sample and to estimate the regression

using LS -- Least Squares (NLS and ARMA), click on OK. The results screen

appears as in the following table. Make sure that you save the Workfile

again to include the transformed series and regression results!

Dependent Variable: ERFORD
Method: Least Squares
Date: 08/21/07 Time: 15:02
Sample (adjusted): 2002M02 2007M04
Included observations: 63 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 2.020219 2.801382 0.721151 0.4736
ERSANDP 0.359726 0.794443 0.452803 0.6523

R-squared 0.003350 Mean dependent var 2.097445
Adjusted R-squared −0.012989 S.D. dependent var 22.05129
S.E. of regression 22.19404 Akaike info criterion 9.068756
Sum squared resid 30047.09 Schwarz criterion 9.136792
Log likelihood −283.6658 Hannan-Quinn criter. 9.095514
F-statistic 0.205031 Durbin-Watson stat 1.785699
Prob(F-statistic) 0.652297

Take a couple of minutes to examine the results of the regression. What

is the slope coefficient estimate and what does it signify? Is this coefficient

statistically significant? The beta coefficient (the slope coefficient) estimate

is 0.3597. The p-value of the t -ratio is 0.6523, signifying that the excess

return on the market proxy has no significant explanatory power for the

variability of the excess returns of Ford stock. What is the interpretation

of the intercept estimate? Is it statistically significant?

In fact, there is a considerably quicker method for using transformed

variables in regression equations, and that is to write the transformation

directly into the equation window. In the CAPM example above, this could

be done by typing

DLOG(FORD)-USTB3M C DLOG(SANDP)-USTB3M

into the equation window. As well as being quicker, an advantage of this

approach is that the output will show more clearly the regression that has

actually been conducted, so that any errors in making the transformations

can be seen more clearly.
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How could the hypothesis that the value of the population coefficient is

equal to 1 be tested? The answer is to click on View/Coefficient Tests/Wald

– Coefficient Restrictions. . . and then in the box that appears, Type C(2)=1.

The conclusion here is that the null hypothesis that the CAPM beta of Ford

stock is 1 cannot be rejected and hence the estimated beta of 0.359 is not

significantly different from 1.5

Key concepts
The key terms to be able to define and explain from this chapter are
● regression model ● disturbance term

● population ● sample

● linear model ● consistency

● unbiasedness ● efficiency

● standard error ● statistical inference

● null hypothesis ● alternative hypothesis

● t -distribution ● confidence interval

● test statistic ● rejection region

● type I error ● type II error

● size of a test ● power of a test

● p-value ● data mining

● asymptotic

Appendix: Mathematical derivations of CLRM results

2A.1 Derivation of the OLS coefficient estimator in the bivariate case

L =
T

∑

t=1

(yt − ŷt )
2 =

T
∑

t=1

(yt − α̂ − β̂xt )
2 (2A.1)

It is necessary to minimise L w.r.t. α̂ and β̂, to find the values of α and

β that give the line that is closest to the data. So L is differentiated w.r.t.

α̂ and β̂, and the first derivatives are set to zero. The first derivatives are

given by

∂L

∂α̂
= −2

∑

t

(yt − α̂ − β̂xt ) = 0 (2A.2)

∂L

∂β̂
= −2

∑

t

xt (yt − α̂ − β̂xt ) = 0 (2A.3)

5 Although the value 0.359 may seem a long way from 1, considered purely from an

econometric perspective, the sample size is quite small and this has led to a large

parameter standard error, which explains the failure to reject both H0 : β = 0 and

H0 : β = 1.
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The next step is to rearrange (2A.2) and (2A.3) in order to obtain expres-

sions for α̂ and β̂. From (2A.2)

∑

t

(yt − α̂ − β̂xt ) = 0 (2A.4)

Expanding the parentheses and recalling that the sum runs from 1 to T

so that there will be T terms in α̂

∑

yt − T α̂ − β̂
∑

xt = 0 (2A.5)

But
∑

yt = Tȳ and
∑

xt = Tx̄ , so it is possible to write (2A.5) as

T ȳ − Tα̂ − Tβ̂ x̄ = 0 (2A.6)

or

ȳ − α̂ − β̂ x̄ = 0 (2A.7)

From (2A.3)

∑

t

xt (yt − α̂ − β̂xt ) = 0 (2A.8)

From (2A.7)

α̂ = ȳ − β̂ x̄ (2A.9)

Substituting into (2A.8) for α̂ from (2A.9)

∑

t

xt (yt − ȳ + β̂ x̄ − β̂xt ) = 0 (2A.10)

∑

t

xt yt − ȳ
∑

xt + β̂ x̄
∑

xt − β̂
∑

x2
t = 0 (2A.11)

∑

t

xt yt − T x̄ ȳ + β̂T x̄2 − β̂
∑

x2
t = 0 (2A.12)

Rearranging for β̂,

β̂

(

T x̄2 −
∑

x2
t

)

= T x y −
∑

xt yt (2A.13)

Dividing both sides of (2A.13) by
(

T x̄2 −
∑

x2
t

)

gives

β̂ =

∑

xt yt − T x y
∑

x2
t − T x̄2

and α̂ = ȳ − β̂ x̄ (2A.14)
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2A.2 Derivation of the OLS standard error estimators for the intercept and

slope in the bivariate case

Recall that the variance of the random variable α̂ can be written as

var(α̂) = E(α̂ − E(α̂))2 (2A.15)

and since the OLS estimator is unbiased

var(α̂) = E(α̂ − α)2 (2A.16)

By similar arguments, the variance of the slope estimator can be written

as

var(β̂) = E(β̂ − β)2 (2A.17)

Working first with (2A.17), replacing β̂ with the formula for it given by

the OLS estimator

var(β̂) = E

(
∑

(xt − x̄)(yt − ȳ)
∑

(xt − x̄)2
− β

)2

(2A.18)

Replacing yt with α + βxt + ut , and replacing ȳ with α + β x̄ in (2A.18)

var(β̂) = E

(
∑

(xt − x̄)(α + βxt + ut − α − β x̄)
∑

(xt − x̄)2
− β

)2

(2A.19)

Cancelling α and multiplying the last β term in (2A.19) by

∑

(xt − x̄)2

∑

(xt − x̄)2

var(β̂) = E

(
∑

(xt − x̄)(βxt + ut − β x̄) − β
∑

(xt − x̄)2

∑

(xt − x̄)2

)2

(2A.20)

Rearranging

var(β̂) = E

(
∑

(xt − x̄)β(xt − x̄) +
∑

ut (xt − x̄) − β
∑

(xt − x̄)2

∑

(xt − x̄)2

)2

(2A.21)

var(β̂) = E

(

β
∑

(xt − x̄)2 +
∑

ut (xt − x̄) − β
∑

(xt − x̄)2

∑

(xt − x̄)2

)2

(2A.22)

Now the β terms in (2A.22) will cancel to give

var(β̂) = E

(
∑

ut (xt − x̄)
∑

(xt − x̄)2

)2

(2A.23)
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Now let x∗
t denote the mean-adjusted observation for xt , i.e. (xt − x̄ ). Equa-

tion (2A.23) can be written

var(β̂) = E

(
∑

ut x
∗
t

∑

x∗2
t

)2

(2A.24)

The denominator of (2A.24) can be taken through the expectations oper-

ator under the assumption that x is fixed or non-stochastic

var(β̂) =
1

(

∑

x∗2
t

)2
E

(

∑

ut x
∗
t

)2

(2A.25)

Writing the terms out in the last summation of (2A.25)

var(β̂) =
1

(

∑

x∗2
t

)2
E

(

u1x∗
1 + u2x∗

2 + · · · + uT x∗
T

)2
(2A.26)

Now expanding the brackets of the squared term in the expectations

operator of (2A.26)

var(β̂) =
1

(

∑

x∗2
t

)2
E

(

u2
1x∗2

1 + u2
2x∗2

2 + · · · + u2
T x∗2

T + cross-products
)

(2A.27)

where ‘cross-products’ in (2A.27) denotes all of the terms ui x
∗
i u j x

∗
j (i �= j).

These cross-products can be written as ui u j x
∗
i x∗

j (i �= j) and their expecta-

tion will be zero under the assumption that the error terms are uncorre-

lated with one another. Thus, the ‘cross-products’ term in (2A.27) will drop

out. Recall also from the chapter text that E(u2
t ) is the error variance,

which is estimated using s2

var(β̂) =
1

(

∑

x∗2
t

)2

(

s2x∗2
1 + s2x∗2

2 + · · · + s2x∗2
T

)

(2A.28)

which can also be written

var(β̂) =
s2

(

∑

x∗2
t

)2

(

x∗2
1 + x∗2

2 + · · · + x∗2
T

)

=
s2

∑

x∗2
t

(

∑

x∗2
t

)2
(2A.29)

A term in
∑

x∗2
t can be cancelled from the numerator and denominator

of (2A.29), and recalling that x∗
t = (xt − x̄ ), this gives the variance of the

slope coefficient as

var(β̂) =
s2

∑

(xt − x̄)2
(2A.30)
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so that the standard error can be obtained by taking the square root of

(2A.30)

SE(β̂) = s

√

1
∑

(xt − x̄)2
(2A.31)

Turning now to the derivation of the intercept standard error, this is in

fact much more difficult than that of the slope standard error. In fact,

both are very much easier using matrix algebra as shown below. Therefore,

this derivation will be offered in summary form. It is possible to express

α̂ as a function of the true α and of the disturbances, ut

α̂ = α +

∑

ut

[

∑

x2
t − xt

∑

xt

]

[

T
∑

x2
t −

(

∑

xt

)2]
(2A.32)

Denoting all of the elements in square brackets as gt , (2A.32) can be written

α̂ − α =
∑

ut gt (2A.33)

From (2A.15), the intercept variance would be written

var(α̂) = E
(

∑

ut gt

)2

=
∑

g2
t E

(

u2
t

)

= s2
∑

g2
t (2A.34)

Writing (2A.34) out in full for g2
t and expanding the brackets

var(α̂) =
s2

[

T
(

∑

x2
t

)2

− 2
∑

xt

(

∑

x2
t

)

∑

xt +
(

∑

x2
t

)(

∑

xt

)2]

[

T
∑

x2
t −

(

∑

xt

)2]2

(2A.35)

This looks rather complex, but fortunately, if we take
∑

x2
t outside the

square brackets in the numerator, the remaining numerator cancels with

a term in the denominator to leave the required result

SE(α̂) = s

√

√

√

√

∑

x2
t

T
∑

(xt − x̄)2
(2A.36)

Review questions

1. (a) Why does OLS estimation involve taking vertical deviations of the

points to the line rather than horizontal distances?

(b) Why are the vertical distances squared before being added

together?
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(c) Why are the squares of the vertical distances taken rather than the

absolute values?

2. Explain, with the use of equations, the difference between the sample

regression function and the population regression function.

3. What is an estimator? Is the OLS estimator superior to all other

estimators? Why or why not?

4. What five assumptions are usually made about the unobservable error

terms in the classical linear regression model (CLRM)? Briefly explain

the meaning of each. Why are these assumptions made?

5. Which of the following models can be estimated (following a suitable

rearrangement if necessary) using ordinary least squares (OLS), where

X , y, Z are variables and α, β, γ are parameters to be estimated?

(Hint: the models need to be linear in the parameters.)

yt = α + βxt + ut (2.57)

yt = eαx
β
t eut (2.58)

yt = α + βγ xt + ut (2.59)

ln(yt ) = α + β ln(xt ) + ut (2.60)

yt = α + βxt zt + ut (2.61)

6. The capital asset pricing model (CAPM) can be written as

E(Ri ) = R f + βi [E(Rm) − R f ] (2.62)

using the standard notation.

The first step in using the CAPM is to estimate the stock’s beta using

the market model. The market model can be written as

Rit = αi + βi Rmt + uit (2.63)

where Rit is the excess return for security i at time t , Rmt is the excess

return on a proxy for the market portfolio at time t, and ut is an iid

random disturbance term. The cofficient beta in this case is also the

CAPM beta for security i .

Suppose that you had estimated (2.63) and found that the estimated

value of beta for a stock, β̂ was 1.147. The standard error associated

with this coefficient SE(β̂) is estimated to be 0.0548.

A city analyst has told you that this security closely follows the

market, but that it is no more risky, on average, than the market. This

can be tested by the null hypotheses that the value of beta is one. The

model is estimated over 62 daily observations. Test this hypothesis

against a one-sided alternative that the security is more risky than the
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market, at the 5% level. Write down the null and alternative hypothesis.

What do you conclude? Are the analyst’s claims empirically verified?

7. The analyst also tells you that shares in Chris Mining PLC have no

systematic risk, in other words that the returns on its shares are

completely unrelated to movements in the market. The value of beta

and its standard error are calculated to be 0.214 and 0.186,

respectively. The model is estimated over 38 quarterly observations.

Write down the null and alternative hypotheses. Test this null

hypothesis against a two-sided alternative.

8. Form and interpret a 95% and a 99% confidence interval for beta using

the figures given in question 7.

9. Are hypotheses tested concerning the actual values of the coefficients

(i.e. β) or their estimated values (i.e. β̂) and why?

10. Using EViews, select one of the other stock series from the ‘capm.wk1’

file and estimate a CAPM beta for that stock. Test the null hypothesis

that the true beta is one and also test the null hypothesis that the true

alpha (intercept) is zero. What are your conclusions?


